How I do infusion test.

Dr Zofia H. Czosnyka

University of Cambridge, UK

Infusion test: procedure to identify model of CSF compensatory reserve introduced in 1973 by Anthony Marmarou. Essential parameters: Resistance to CSF outflow and compliance of CSF space

pressure P

Compliance of CSF Resistance space Formation of to CSF CSF outflow Po Pss [CP ICPwaves trueICP PO,AMP P AMP P-line ABP CPPoptimum ICP 30. [mmHg] 25 20. 15 Infusion 1 ml/min

TIME ~30 minutes

What we need? Hardware Pressure transducer, tubing, needles

Essential: sterile preparation of transducer and tubing

Measurement set-up

Lumbar

Checking the waveform of ICP signal

When the pulse waveform is weak,

looking at the spectrum of ABP helps

INFUSION TEST

Real time observation of trends of mean ICP, heart rate, pulse amplitude of ICP and RAP index during the study. Always mark start, end of infusion!

Lower breakpoint of AMP-P characteristic

After study is finished: **Analysis of the Marmarou model First: mark** baseline, transition and end-plateau periods. **Introduce infusion rate** and press 'calculate'

Constant rate CSF infusion challenge

Click 'more' and you see:

I use this screen to assess visually quality of identification of the model

Home Charts Dat	a			
Signals Calculations Devices Test	Save Load Profile Profile	Note	New Monitor	Tests Signal Calculator
Analysis Configuration	Profile	Control Pane	el	Data Tools
Series 🦉 Clinical Notebook	🛛 🕕 Data Analy	sis		
Demographics Project Data C	Copy Notes Or	e Column Sections	Fonts Tab)S
Project: <u>Patient description:</u> Name Surname DateOfBirth DateOflctus	03/10/2013	MidInitial HospitalNo Sex DateOfAdmission		lale 3/10/2013

If everything looks OK, you can **display report** and copy/ paste it to WORD

Clinical background:

NPH?

Prkinson's disease. Type II diabetes. Hypertension., Macular degeneration (register blind), deaf.

Slurred speach, urinary incontinence, cognitive decline, mobilised with a frame.

ventriculomegaly, significant white matter changes.

Lumbar study , one pink needle. ndrVenessa.

Patientis mooving

Tests Results:

[CSF Infusion Test]

Infusion rate [ml/min]	1.50	Calculation mode	static
One needle only	yes		
ICP baseline [mmHg]	8.99	ICP plateau [mmHg]	32.76
AMP baseline [mmHg]	0.79	AMP plateau [mmHg]	4.19
Rcsf [mmHg*min/ml]	15.85	Elastance [1/ml]	0.22
PVI [ml]	10.67	Pss [mmHg]	4.87
CSF production rate [ml/min]	0.26	Volume infused [ml]	27.28
Infusion duration [min]	18.19	Needle resist. [mmHg*min/ml]	0.14
Normalised Error [%]	1.134		

Test 'unfinished'

- if pressure increases to 40 mm Hg without reaching plateau

- 1. I never use 'dynamic' when plateau is good and long
- 2. I never use 'dynamic' in shunted patients

One needle test: we usually observe rapid increase of ICP just after start of infusion, not reflected by increase in AMP. Tick in 'Parameters' 'one needle' option and problem of higher resistance of the needle may be solved automatically...

Step-rise of ICP is accounted for and eliminated from its potential influence on CSF compensatory parameters

CSF circulation with shunt in situ

Czosnyka ZH et al.. Shunt testing in-vivo: A method based on the data from the UK Shunt Evaluation Laboratory. Acta Neurochir. Suppl. 81. 2 001 (in press)

Shunt evaluation laboratory

R61

Review: Cerebrospinal fluid dynamics

Figure 5. Examples of the pressure–flow curves of three valves: (a) almost linear: ball-on-spring valve; (b) parabolic shape of silicone membrane valve; (c) highly nonlinear 'autoregulating' Orbis–Sigma valve.

Shunt tested as '<u>blocked' distally.</u> Too high resistance to outflow, prominent vasogenic waves. During the revision broken distal drain (at chest) was found.

Infusion rate [ml/min] 1.50 Calculation type One needle only:	Dynamic	Infusion rate [ml/min] One needle only:	1.50	Calculation type
CSF Shunt		CSF Shunt		
Туре		Туре		
Strata	-	Strata		
Miethke - PediGav Miethke - ProGAV	^	Setting		Value [performance level]
Omni-shunt NMT (Cordis)		programmable	•	0.50
Orbis-Sigma NMT				
PS-Medical L-P Pudenz-Flushing Heyer-Shutte with ASD		Overdrainage test		
Sophy-Programmable	Ξ	-		
Strata	T			
OK X Cancel			ж	X Cancel
				A cancer

CSF Infusion Test Res

ICM+ has a database of shunt parameters from Cambridge Shunt Lab. Every shunt at given performance level has a limit above which pressure should not rise during infusion of given rate (1ml/min or 1.5 ml/min). If pressure exceeds this limit (blue horizontal line), it indicates that shunt underdrains.

Blockage of ventricular catheter- view of ICM file

Choroid plexus in-growing int ventricular catheter

Possibly fluent CSF flow at baseline, aspiration possible, ICP pulsation visible

After start of infusion in-growing plexi jam dynamically ventricular catheter, all infused fluid flows distally, pressure pulsations dissapear

Partially blocked ventricular end

by in-growing choroid plexi – ICP waveform diminishes after start of infusion

Happy infusion studies!

