CPPopt without ‘Cogitates’

can we manage patients?

teamwork
CPPopt without ‘Cogitates’

‘cogitate’
think deeply about something
meditate or reflect
CPP one size fits all?

CPP = MAP - ICP

'cogitate' = think deeply about something; meditate or reflect.

the driving force of cerebral blood flow across the microvascular capillary bed.
CPP one size fits all?

CPP above: 70?65?...

CPP may be low; ICP < 15 mmHg

Too low CPP: ischaemia

CPP one size fits all?

Too high CPP: hyperaemia

‘cogitate’ = think deeply about something; meditate or reflect.
the driving force of cerebral blood flow across the microvascular capillary bed.

CPP = MAP-ICP

“the minimum level of CPP in this instance is greater than 70mmHg and frequently higher, defined by individual circumstances”

PRx = qMAP,ICP

“the most important advantage of PRx is the ability to guide the management of cerebral perfusion pressure”

‘cogitate’= think deeply about something; meditate or reflect.
individualized CPP according to the autoregulation status

CPP = MAP - ICP

\[PRx = \rho_{\text{MAP,ICP}} \]

CPPopt = \(f(\text{PRx}) \)

Luzius Steiner

‘The Cambridge Hypothesis’

CPP should be kept at the CPP where an individual patient autoregulates most efficiently

from http://cppopt.org/cppopt-calculation-visualisation/

‘cogitate’= think deeply about something; meditate or reflect.
Clinical Decision Support System approach:

- CPPopt value and curve, updated every minute, in a 4 hr calculation window
- at least 75% of time good recordings of CPP and ICP values had to be available in the 4hr calculation window
- average PRx values had to be < 0.25 the past 4hrs
- select the CPP value with most negative PRx value covered by the curve.
- U-shaped, ascending and descending curves were accepted in case the overall PRx<0.25.
TBI: CPPopt and CPP management

CPP management with PRx and CPPopt:

a) When possible, we guide CPP management using the bedside CPPopt values.

b) Management of CPPopt values with: adequate sedoanalgesia, oxygenation, ventilation, control of temperature, vasopressor therapy, fluid balance and treat intracranial hypertension.

c) When CPPopt is not available, we keep CPP between 60-70 mmHg in accordance to BFT Guidelines.
Traumatic Brain Injury and Intracranial Hypertension
NCCU protocol

all patients with or at risk of intracranial hypertension:
- EKG, SpO2, ETCO2
- Invasive ABP, CVP line
- ICP monitor with ICP wave and ICM + connection
Selected severe cases:
- NIRS
- PbtO2 and brain temperature
- TDF-CBF
- EEG and BIS

Monitoring

- 30° head up, no venous obstruction
- opt CPP or CPP=60-70 mmHg
- SpO2>97%; PaO2>90mmHg, PaCO2 35-40mmHg
- Temp<37°C; blood sugar 80-120 mg/dl
- Propofol 2% and/or midazolam: target 0<RASS<-5
- Fentanyl: target BPS < 3
- Ranitidine 50mg tid
- Norepinephrine according to CPP target
- Fluids with normal saline; 140<Na+ target<155mEq/l
- Tube feeding (orogastric, oroejunal): target 25-30Kcal/kg/d
- Control of seizures

Management I

Check ICP wave and ICP amplitude
Check / Change ICP probe

- adjust NE to CPP target if ICP<20 and CPP≠CPPopt
- 0.5-1g/kg 20% manitol if ICP>20 and S_{Osm}<320 or 2ml/kg 20% NaCl if ICP>20 and S_{Osm}>320.
- Mild hyperventilation: PaCO2=30-35 mmHg
- Mild hypothermia T 35°C
- Paralysis with rocuronium

Management II

Repeat osmotherapy bolus every 4h, if high ICP
- Moderate hypothermia 34-35°C
- Trial of tiopenthal

Management III

ICP<20
optCPP or CPP=60-70

recent CT ?
low risk of surgical lesion ?

Repeat CT

- Surgical lesion?
- CSF drainage ?
- Role for surgical decompression?

Call Neurosurgery

'CPPopt' in clinical practice at the NCCU: how do we do it with ICM+ in Porto
'CPPopt' in clinical practice at the NCCU: how do we do it with ICM+ in Porto
severe TBI and spontaneous SAH with advanced vs standard neuromonitoring

- **3 and 6M outcome** of the 2 groups of patients
- except for age there was no difference between the two groups at baseline, namely for GCS and SAPS II.
- **Advanced neuromonitoring group had a significantly better outcome (GOS) at 3 and 6 months and lower mortality.** Adjusting outcome for age, patients with advanced neuromonitoring had a lower risk of bad outcome.

<table>
<thead>
<tr>
<th>Outcome Mortality and GOS</th>
<th>Advanced Monitoring n (%)</th>
<th>Standard Monitoring n (%)</th>
<th>p value</th>
<th>Odds ratio (adjusted for age)</th>
</tr>
</thead>
<tbody>
<tr>
<td>at 3 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good*</td>
<td>50 (75.8)</td>
<td>110 (50.0)</td>
<td>0.01</td>
<td>0.485(0.248-0.950)</td>
</tr>
<tr>
<td>Bad**</td>
<td>16 (24.2)</td>
<td>110 (50.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>7 (10.6)</td>
<td>54 (24.5)</td>
<td>0.015</td>
<td>0.579(0.238-1.404)</td>
</tr>
<tr>
<td>at 6 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good*</td>
<td>50 (76.9)</td>
<td>119 (58.0)</td>
<td>0.006</td>
<td>0.632(0.316-1.263)</td>
</tr>
<tr>
<td>Bad**</td>
<td>15 (23.1)</td>
<td>86 (42.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mortality</td>
<td>9 (13.8)</td>
<td>52 (25.4)</td>
<td>0.053</td>
<td>0.798(0.346-1.838)</td>
</tr>
</tbody>
</table>

*Good = GOS 4+5 **Bad= GOS1+2+3
Optimal Cerebral Perfusion Pressure Management at Bedside: A Single-Center Pilot Study

Celeste Dias · Maria João Silva · Eduarda Pereira · Elisabete Monteiro · Isabel Maia · Silvina Barbosa · Sofia Silva · Teresa Honrado · António Cerejo · Marcel J. H. Aries · Peter Smielewski · José-Artur Palva · Marek Czosnyka

CV reactivity preserved (PRx < 0.25) \((n=15) \)
- mean PRx = -0.04 (SD 0.13)

CV reactivity impaired (PRx > 0.25) \((n=3) \)
- mean PRx = 0.29 (SD 0.04)

There were no differences in age, SAPSII, and Marshall scores, but patients with overall preserved autoregulation presented significantly higher GCS at admission.
CPPopt vs CPP and outcome at 6M, 2018

severe TBI and spontaneous SAH
- **6M outcome** of patients at NCCU managed according to CPPopt
- Patients at the general ICU are managed according to guidelines
- No difference between age, gender and severity scores between groups

p < 0.001

<table>
<thead>
<tr>
<th></th>
<th>NCCU n, (%)</th>
<th>General ICU n, (%)</th>
<th>Surgical ICU n, (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad outcome (GOS 1, 2, 3)</td>
<td>15 (14%)</td>
<td>41 (38%)</td>
<td>52 (33%)</td>
</tr>
<tr>
<td>Good outcome (GOS 4,5)</td>
<td>50 (47%)</td>
<td>35 (33%)</td>
<td>22 (21%)</td>
</tr>
</tbody>
</table>

ICM + and clinical research in the Intensive Care Department
Spontaneous Intracerebral Hemorrhage
28-day mortality and PRx, % of time of PRx > 0.25 and CPP-CPPopt

We analyzed data from 46 patients, representing a mean duration of 263±173 hours of signal records, with a median length of stay in ICU of 22 (IQR 13) days. The mean age was 62.6±11.8 years old and 24(52%) were male. EVD drainage was applied in 50% of patients and 32.6% were submitted to surgery.
ICM + and clinical research in the Intensive Care Department

CPP-CPPopt along time and outcome at 3M, 2019

<table>
<thead>
<tr>
<th>Demographic Data</th>
<th>Mean/Median (+/-sd or IQR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>92</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>53 ± 21</td>
</tr>
<tr>
<td>Gender</td>
<td>Male: 79 (86%), Female: 13 (14%)</td>
</tr>
<tr>
<td>GCS at admission</td>
<td>7 (IQR 5)</td>
</tr>
<tr>
<td>APACHE II</td>
<td>19 ± 6</td>
</tr>
<tr>
<td>Apache II mortality (%)</td>
<td>33 ± 17%</td>
</tr>
<tr>
<td>CT Marshall score</td>
<td>3 (IQR 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS ICU (days)</td>
<td>22 ± 26</td>
</tr>
<tr>
<td>LOS Hosp (days)</td>
<td>48 ± 48</td>
</tr>
<tr>
<td>Mortality</td>
<td>14 (15.2%)</td>
</tr>
<tr>
<td>GOS at 3 months</td>
<td>3 (IQR 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitoring Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ICP (mmHg)</td>
<td>11.19 ± 5.79</td>
</tr>
<tr>
<td>CPP (mmHg)</td>
<td>85.91 ± 7.37</td>
</tr>
<tr>
<td>PRx</td>
<td>0.03 ± 0.19</td>
</tr>
<tr>
<td>CPPopt (mmHg)</td>
<td>88.74 ± 8.54</td>
</tr>
<tr>
<td>CPP-CPPopt (mmHg)</td>
<td>-2.83 ± 10.23</td>
</tr>
</tbody>
</table>

While, at day 0 CPP-CPPopt is not significantly different between dead and alive, as time evolves during the first 10 days of the study, the model expects: (1) alive individuals to significantly increase CPP-CPPopt within positive range on average by 0.5 each day; (2) dead individuals to progressively lower their CPP-CPPopt values within negative range, at a rate of 0.6 per day (p=0.048).